首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   19篇
  国内免费   20篇
测绘学   7篇
大气科学   41篇
地球物理   89篇
地质学   143篇
海洋学   22篇
天文学   32篇
自然地理   43篇
  2022年   4篇
  2021年   11篇
  2020年   16篇
  2019年   16篇
  2018年   14篇
  2017年   9篇
  2016年   11篇
  2015年   18篇
  2014年   11篇
  2013年   27篇
  2012年   21篇
  2011年   20篇
  2010年   19篇
  2009年   20篇
  2008年   23篇
  2007年   20篇
  2006年   13篇
  2005年   12篇
  2004年   13篇
  2003年   9篇
  2002年   12篇
  2001年   5篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1961年   1篇
排序方式: 共有377条查询结果,搜索用时 31 毫秒
61.
A zircon grain in an orthopyroxene–garnet–phlogopite–zircon–rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal–plastic deformation. The zircon grain records significant variations in titanium (Ti) from 2.6 to 30 ppm that corresponds to a difference in calculated Ti-in-zircon temperatures of over several hundred degrees Celsius. The highest Ti concentration is measured at subgrain centres (30 ppm), and Ti is variably depleted at low-angle boundaries (down to 2.6 ppm). Variations in cathodoluminescence coincide with the deformation microstructure and indicate localised, differential enrichment of rare earth elements (REE) at low-angle boundaries. Variable enrichment of U and Th and systematic increase of Th/U from 1.61 to 3.52 occurs at low-angle boundaries. Individual SHRIMP-derived U–Pb ages from more deformed zones (mean age of 1799 ± 40, n = 22) are systematically younger than subgrain cores (mean age of 1851 ± 65 Ma, n = 7), and indicate that open system behaviour of Ti–Th–U occurred shortly after zircon growth, prior to the accumulation of significant radiogenic Pb. Modelling of trace-element diffusion distances for geologically reasonable thermal histories indicates that the observed variations are ~ 5 orders of magnitude greater than can be accounted for by volume diffusion. The data are best explained by enhanced diffusion of U, Th and Ti along deformation-related fast-diffusion pathways, such as dislocations and low-angle (< 5°) boundaries. These results indicate chemical exchange between zircon and the surrounding matrix and show that Ti-in-zircon thermometry and U–Pb geochronology from deformed zircon may not yield information relating to the conditions and timing of primary crystallisation.  相似文献   
62.
Exceptionally well-preserved pillowed and massive phenocryst-free metabasaltic lava flows in the uppermost part of the Palaeoarchaean Hooggenoeg Complex of the Barberton Greenstone Belt exhibit both flow banding and large leucocratic varioles. The flow banding is defined by blebs and bands of pale and dark green metabasalt and was the result of mingling of two types of basalt (Robins et al. in Bull Volcanol 72:579–592, 2010a). Varioles occur exclusively in the dark chlorite-, MgO- and FeO-rich metabasalt. Varioles are absent in the outermost rinds of pillows and increase in both abundance and size towards the centres of pillows. In the central parts of some pillows, they impinge to form homogeneous pale patches, bands or almost homogenous cores. Individual varioles consist essentially of radially orientated or outwardly branching dendritic crystals of albite. Many varioles exhibit concentric zones and finer-grained rims. Some varioles seem to have grown around tiny vesicles and vesicles appear to have been trapped in others between a core and a finer-grained rim. The matrix surrounding the ocelli contains acicular pseudomorphs of actinolite and chlorite after chain-like, skeletal Ca-rich pyroxenes that are partly overgrown by the margins of varioles. Varioles are enriched in the chemical constituents of feldspar but contain concentrations of immobile TiO2, Cr, Zr and REE that are similar to the host metabasalts. The shape, distribution, texture and composition of the varioles exclude liquid immiscibility and support an origin by spherulitic crystallisation of plagioclase from severely undercooled basalt melt and glass. Nucleation of plagioclase was strongly inhibited and took place on vesicles, on the bases of drainage cavities and along early fractures. Eruption in deep water and retention of relatively high concentrations of volatiles in the melt may be the principal cause of spherulitic crystallisation in the interiors of pillows rather than only in their margins as in younger submarine flows.  相似文献   
63.
Nick Gill  Paula Bialski 《Geoforum》2011,42(2):241-249
This paper contributes to on-going work that seeks to understand the dynamic nature of immigrant social network formation. We explore three propositions, derived from the literature, that might be expected to characterise the ways in which migrant associational ties evolve during and immediately after arrival in their destination country. Evidence is drawn from 42 interviews conducted between January and December 2008 with predominantly Polish migrants to the UK (28) as well as domestic service providers (14). In agreement with the existing literature on immigrant social network formation we find that weak associational ties between migrants are locally dense and rapidly formed. More surprisingly, we also find that the Poles in our sample from lower socio-economic groups tended to rely heavily upon weak associational ties while higher socio-economic group Poles tended to rely on associations made through their employing institutions. This illustrates the importance of socio-economic status in framing co-ethnic migrant network formation. This is significant because we also find that weak associational ties are not unambiguously beneficial to lower socio-economic group migrants who tend to (have to be) more compromising about, and therefore more compromised by, the social ‘friendships’ that result.  相似文献   
64.
65.
The Hardangervidda-Rogaland Block within southwest Norway is host to ~1.52 to 1.48 Ga continental building and variable reworking during the ~1.1 to 0.9 Ga Sveconorwegian orogeny. Due to the lack of geochronological and geochemical data, the timing and tectonic setting of early Mesoproterozoic magmatism has long been ambiguous. This paper presents zircon U–Pb–Hf–O isotope data combined with whole-rock geochemistry to address the age and petrogenesis of basement units within the Suldal region, located in the centre of the Hardangervidda-Rogaland Block. The basement comprises variably deformed grey gneisses and granitoids that petrologically and geochemically resemble mature volcanic arc lithologies. U–Pb ages confirm that magmatism occurred from ~1,521 to 1,485 Ma, and conspicuously lack any xenocrystic inheritance of distinctly older crust. Hafnium isotope data range from εHf(initial) +1 to +11, suggesting a rather juvenile magmatic source, but with possible involvement of late Palaeoproterozoic crust. Oxygen isotope data range from mantle-like (δ18O ~5 ‰) to elevated (~10 ‰) suggesting involvement of low-temperature altered material (e.g., supracrustal rocks) in the magma source. The Hf–O isotope array is compatible with mixing between mantle-derived material with young low-temperature altered material (oceanic crust/sediments) and older low-temperature altered material (continent-derived sediments). This, combined with a lack of xenoliths and xenocrysts, exposed older crust, AFC trends and S-type geochemistry, all point to mixing within a deep-crustal magma-generation zone. A proposed model comprises accretion of altered oceanic crust and the overlying sediments to a pre-existing continental margin, underthrusting to the magma-generation zone and remobilisation during arc magmatism. The geodynamic setting for this arc magmatism is comparable with that seen in the Phanerozoic (e.g., the Sierra Nevada and Coast Range batholiths), with compositions in the Suldal Sector reaching those of average upper continental crust. As within these younger examples, factors that drive magmatism towards the composition of the average continental crust include the addition of sedimentary material to magma source regions, and delamination of cumulate material. Underthrusting of sedimentary materials and their subsequent involvement in arc magmatism is perhaps a more widespread mechanism involved in continental growth than is currently recognised. Finally, the Suldal Arc magmatism represents a significant juvenile crustal addition to SW Fennoscandia.  相似文献   
66.
67.
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.  相似文献   
68.
The Paleoarchean (ca. 3.5–3.3 Ga) Onverwacht Suite (OS) of the Barberton Greenstone Belt consists of a 15‐km thick imbricate tectonic stack of seven complexes consisting predominantly of volcanic rocks and intrusions. Tectonostratigraphically from base to top they are the Sandspruit, Theespruit, Komati, Hooggenoeg, Noisy, Kromberg and Mendon Complexes. The Hooggenoeg and Noisy Complexes in the middle of the OS are separated by a significant unconformity resulting from the uplift of the submarine lavas and deep erosion, demonstrating the onset of tectonic accretion prior to 3455 Ma. The basic lavas of the tectonostratigraphic lower (Theespruit, Sandspruit and Komati) and upper (Mendon) complexes are composed of komatiite, komatiitic basalt and high-MgO basalt, whereas those in the middle part (Hooggenoeg and Kromberg) are predominantly high- to low-MgO tholeiitic basalts. Felsic volcanic rocks and intrusions are important in two of the complexes (Theespruit and Noisy). The ultramafic to basaltic lavas show REE patterns that are almost flat and resemble those of modern MORB, whereas those of the felsic rocks are flat from Lu to Gd and moderately to strongly enriched in LREE, similar to modern arcs. Average εNd (T) values are close to depleted mantle growth curves. In MORB-normalised multi-element diagrams, the komatiitic to basaltic rocks exhibit flat patterns from Lu through La and consistent relative enrichment in the elements Pb, U, Th, Ba and Cs. Apart from the Komati Complex, the majority of the lavas show significant negative Nb and Ta anomalies. Enrichment in non-conservative incompatible elements (Cs, Ba, Th, LREE) relative to conservative elements (Ta, Nb, Zr, Hf, Ti, Y, HREE) shows that the komatiitic to basaltic magmas were generated from metasomatised mantle above subducting altered oceanic crust. The geochemistry of the felsic rocks indicates an origin by melting of subducted amphibolite and eclogite. The tectonostratigraphy and the geochemical characteristics of the lavas and intrusions are consistent with successive obduction and accretion of segments of oceanic crust formed in back-arc basins and volcanic arcs.  相似文献   
69.
Failure of borehole sources in weathered and fractured crystalline basement aquifers in Malawi in southern Africa has been linked with poor borehole design, mechanical failure and badly sited boreholes. However, recent work in Malawi indicates that demand may now exceed long-term resource potential in some places and that this is also a cause of water point failure. An 11-year climate cycle (including a wet and dry period) necessitates overdraft from groundwater storage during the dry-cycle years before episodic rainfall events in the wetter part of the cycle again recharge the aquifers. Data, particularly groundwater hydrograph data, are sparse, but sufficient to evaluate the long-term renewable groundwater potential for both fractured and weathered basement-aquifer types in each of the 15 management areas in Malawi. The groundwater potential or long-term renewable resource (recharge) is given by the sum of Darcian throughflow and dry-season depletion of storage. Estimated rural demand exceeds the renewable resource in the fractured-rock aquifer in two management units and in the weathered-rock aquifer in two other units. Although there is inherent uncertainty in the water-balance estimates, the likelihood that rural demand is exceeding long-term average recharge in some areas is cause for concern.  相似文献   
70.
Accurate and realistic characterizations of flood hazards on desert piedmonts and playas are increasingly important given the rapid urbanization of arid regions. Flood behavior in arid fluvial systems differs greatly from that of the perennial rivers upon which most conventional flood hazard assessment methods are based. Additionally, hazard assessments may vary widely between studies or even contradict other maps. This study's chief objective was to compare and evaluate landscape interpretation and hazard assessment between types of maps depicting assessments of flood risk in Ivanpah Valley, NV, as a case study. As a secondary goal, we explain likely causes of discrepancy between data sets to ameliorate confusion for map users. Four maps, including three different flood hazard assessments of Ivanpah Valley, NV, were compared: (i) a regulatory map prepared by FEMA, (ii) a soil survey map prepared by NRCS, (iii) a surficial geologic map, and (iv) a flood hazard map derived from the surficial geologic map, both of which were prepared by NBMG. GIS comparisons revealed that only 3.4% (33.9 km2) of Ivanpah Valley was found to lie within a FEMA floodplain, while the geologic flood hazard map indicated that ~ 44% of Ivanpah Valley runs some risk of flooding (Fig. 2D). Due to differences in mapping methodology and scale, NRCS data could not be quantitatively compared, and other comparisons were complicated by differences in flood hazard class criteria and terminology between maps. Owing to its scale and scope of attribute data, the surficial geologic map provides the most useful information on flood hazards for land-use planning. This research has implications for future soil geomorphic mapping and flood risk mitigation on desert piedmonts and playas. The Ivanpah Valley study area also includes the location of a planned new international airport, thus this study has immediate implications for urban development and land-use planning near Las Vegas, NV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号